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2.1 introduction

Predicting fatigue damage for structural components subjected to variable

loading conditions is a complex issue. The first, simplest, and most widely

used damage model is the linear damage. This rule is often referred to as

Miner’s rule (1945). However, in many cases the linear rule often leads to

nonconservative life predictions. The results from this approach do not take

into account the effect of load sequence on the accumulation of damage due

to cyclic fatigue loading. Since the introduction of the linear damage

rule many different fatigue damage theories have been proposed to improve

the accuracy of fatigue life prediction. A comprehensive review of many

fatigue damage approaches can be found elsewhere (Fatemi and Yang,

1998). This chapter addresses (1) underlying fatigue damage mechanisms,

(2) fatigue damage models commonly used in the automotive industry, and

(3) postulations and practical implementations of these damage rules.

2.2 fatigue damage mechanism

Fatigue is a localized damage process of a component produced by cyclic

loading. It is the result of the cumulative process consisting of crack initi-

ation, propagation, and final fracture of a component. During cyclic loading,

localized plastic deformation may occur at the highest stress site. This plastic

deformation induces permanent damage to the component and a crack

develops. As the component experiences an increasing number of loading

cycles, the length of the crack (damage) increases. After a certain number of

cycles, the crack will cause the component to fail (separate).
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In general, it has been observed that the fatigue process involves the

following stages: (1) crack nucleation, (2) short crack growth, (3) long

crack growth, and (4) final fracture. Cracks start on the localized shear

plane at or near high stress concentrations, such as persistent slip bands,

inclusions, porosity, or discontinuities. The localized shear plane usually

occurs at the surface or within grain boundaries. This step, crack nucleation,

is the first step in the fatigue process. Once nucleation occurs and cyclic

loading continues, the crack tends to grow along the plane of maximum

shear stress and through the grain boundary.

A graphical representation of the fatigue damage process shows where

crack nucleation starts at the highest stress concentration site(s) in the per-

sistent slip bands (Figure 2.1). The next step in the fatigue process is the crack

growth stage. This stage is divided between the growth of Stage I and Stage II

cracks. Stage I crack nucleation and growth are usually considered to be the

initial short crack propagation across a finite length of the order of a couple

of grains on the local maximum shear stress plane. In this stage, the crack tip

plasticity is greatly affected by the slip characteristics, grain size, orientation,

and stress level, because the crack size is comparable to the material micro-

structure. Stage II crack growth refers to long crack propagation normal to

the principal tensile stress plane globally and in the maximum shear stress

direction locally. In this stage, the characteristics of the long crack are less

affected by the properties of the microstructure than the Stage I crack. This is

because the crack tip plastic zone for Stage II crack is much larger than the

material microstructure.
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Stage I fatigue crack

Stage II fatigue crack

(Persistent slip band)

figure 2.1 The fatigue process: a thin plate under cyclic tensile loading.
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In engineering applications, the amount of component life spent on crack

nucleation and short crack growth is usually called the crack initiation period,

whereas the component life spent during long crack growth is called the crack

propagation period. An exact definition of the transition period from initi-

ation to propagation is usually not possible. However, for steels the size of a

crack at the end of the initiation stage, a0, is of the order of a couple of grains

of the material. This crack size typically ranges from about 0.1 to 1.0 mm.

The crack initiation size can be estimated using the linear elastic fracture

mechanics approach for smooth specimens by Dowling (1998):

a0 ¼
1

p
DKth

DSe

� �2

(2:2:1)

or by 0.1 to 0.2 times the notch-tip radius for notched specimens (Dowling,

1998), or by twice the Peterson empirical material constant for steels

(Peterson, 1959):

a0(mm) ¼ 2� 0:0254� 2079

Su(MPa)

� �1:8

(2:2:2)

where Su is the ultimate tensile strength of a material, DSe is the stress range

at the fatigue limit, and DKth is the range of the threshold intensity factor for

R ¼ �1.

Typically, the crack initiation period accounts for most of the fatigue life

of a component made of steels, particularly in the high-cycle fatigue regime

(approximately >10,000 cycles). In the low-cycle fatigue regime (approxi-

mately <10,000 cycles), most of the fatigue life is spent on crack propagation.

Once a crack has formed or complete failure has occurred, the surface of a

fatigue failure can be inspected. A bending or axial fatigue failure generally

leaves behind clamshell or beach markings. The name for these markings

comes from the appearance of the surface. An illustration of these markings is

shown in Figure 2.2. The crack nucleation site is the center of the shell, and

the crack appears to propagate away from the nucleation site, usually in

a radial manner. A semielliptical pattern is left behind. In some cases,

inspection of the size and location of the beach marks left behind may

indicate where a different period of crack growth began or ended.

Within the beach lines are striations. The striations shown in Figure 2.2

appear similar to the rings on the cross-section of a tree. These striations

represent the extension of the crack during one loading cycle. Instead of

a ring for each year of growth, there is a ring for each loading cycle. In the

event of a failure, there is a final shear lip, which is the last bit of material

supporting the load before failure. The size of this lip depends on the type of

loading, material, and other conditions.

LEE: FATIGUE TESTING AND ANALYSIS Final Proof 22.6.2004 4:07pm page 59

Fatigue Damage Mechanism 59



2.3 cumulative damage models—the damage

curve approach

The component’s damage can be expressed in terms of an accumulation of

the crack length toward a maximum acceptable crack length. For example, a

smooth specimen with a crack length at fracture of af is subjected to cyclic

loading that results in a crack length of a. The amount of damage, D, at a

given stress level S1, would be the ratio of a to af . To illustrate the cumulative

damage concept, a crack growth equation developed by Manson and Halford

(1981) is adopted:

a ¼ a0 þ (af � a0)
n

Nf

� �af

(2:3:1)

Equation 2.3.1 was derived based on early crack growth fracture mechan-

ics and fitted with a large amount of test data for loading with two-step life/

stress levels, where n is the number of loading cycles applied to achieve a

crack length of a, and a0 is the initial crack length. The value Nf represents

the number of cycles applied to achieve the crack length af at final fracture.

The exponent af is empirically determined and has the following form:

af ¼
2

3
N0:4

f (2:3:2)

Initial crack site

896,574 cycles

45,740 cycles

1205 cycles

780 cycles

figure 2.2 Fracture surface markings and striations.

LEE: FATIGUE TESTING AND ANALYSIS Final Proof 22.6.2004 4:07pm page 60

60 Fatigue Damage Theories



Cumulative damage (D) is the ratio of instantaneous to final crack length

and can be expressed as follows:

D ¼ a

af

¼ 1

af

a0 þ (af � a0)
n

Nf

� �af
� �

(2:3:3)

This damage equation implies that fatigue failure occurs when D is equal

to unity (i.e., a ¼ af ).

Consider a two-step high–low sequence loading in Figure 2.3, where n1

denotes the initial applied load cycles with a higher stress or load level and

n2, f the remaining cycles to eventual fatigue failure with a lower stress or load

level. Note that the subscripts 1 and 2 refer to sequence of the applied

loading: 1 is the first and 2 is the second load level. The S–N curve is used

to obtain the fatigue lives N1, f and N2, f for each load level. Nonlinear

damage curves for two different loads are shown schematically in Figure

2.4. Each of these curves represents a different loading condition that leads to

a different time to failure (or life level). At each load level or life level, the

relation between the damage value and the applied cycles or the cycle ratio

follows the power law equation in Equation 2.3.3. If a cycle ratio n1=N1, f is

first applied along the curves representing the life level N1, f to point OA, the

damage accumulation process will be represented by the life level curve N1, f

from zero to point A. If at this point a new loading level with a life of N2, f is

introduced and this loading is applied, the damage process will proceed from

point A to point A0 from the same damage value.

If the load corresponding to the cycle ratio n2, f =N2, f is applied from A0 to
B0 at the life level N2f , failure takes place if D ¼ 1:0 is reached at point B0.
From this figure, it is clear that if a higher load level with a lower life along

OA is first applied and followed by the lower load magnitude with a higher

Nf

high-low sequence

−500
−400
−300
−200
−100

0
100
200
300
400
500

N1,f N2,f

Sa

n1 n2,f to failure

S

n1/N1,f n2,f / N2,f

figure 2.3 A block of two-step high–low sequence loading.
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life along A0B0, the sum of cycle ratios will be smaller than unity. Thus, the

estimated fatigue life depends on the sequence of loading. However, if a lower

load level is applied first along OA0 and is followed by the higher load level

along AB, the summation of the cycle ratios is greater than unity because the

cycle ratio AA0 is accounted for twice.

Based on the equal damage at A and A0 in Figure 2.4 for the two load

levels, the following equations hold true for the relation between the cycle

ratio n1=N1, f and the equivalent damage cycle ratio n2=N2, f :

n2, f

N2, f

� �
¼ 1� n1

N1, f

� � N1; f =N2; fð Þ0:4
(2:3:4)

and

n1

N1, f

¼ n2

N2, f

� � N2; f =N1; fð Þ0:4
(2:3:5)

where n2 is the number of cycles at the life level N2, f , equivalent damage to

the initial cycle ratio n1=N1, f .

It is clear that Equation 2.3.5 is independent of material and geometric

parameters (e.g., a0, af , and af ) that were introduced in the damage accumu-

lation equation (Equation 2.3.3). Thereby, a nonlinear damage curve for a

reference life level (N1, f ) can be linearized by replacing a0 by zero and 2/3 by

1=N1, f

� �0:4
. Thus, the damage function for the reference life level can be

simplified as a linear line connecting (0,0) with (1,1), i.e.,

D1 ¼
n1

N1, f

(2:3:6)

N2,fN1,f n2n1
0

1.0

A A�

B�B

Nf, Cycles

A

B, B�

0

1.0

1.0
n1/N1,f

n/Nf, Cycle Fraction

D
. D
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D
. D
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n2/N2,f

A�

n2,f
n2,f / N2,f

figure 2.4 Nonlinear damage accumulation.
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Therefore, the damage curve for another life level (N2, f ) is then given by

the power law damage equation defined as:

D2 ¼
n2

N2, f

� � N2; f =N1; fð Þ0:4
(2:3:7)

For multiple life levels (e.g., N1, f < N2, f < � � � < Nn, f ), the damage curves

can be constructed expeditiously by letting the damage curve for the lowest

life level be the reference life.

Two other methods have been developed to determine the power law

damage equation. Based on the experimental observations that the equivalent

damage S–N lines converge to the fatigue limit, Subramanyan (1976) calcu-

lated damage by referring to the reference stress amplitude Sref and the

fatigue limit Se as follows:

DN ¼
nn

Nn, f

� �(Sn�Se)=(Sref�Se)

(2:3:8)

On the other hand, Hashin (1980) expressed this differently by using the

fatigue life Ne at the fatigue limit Se:

DN ¼
nn

Nn, f

� �log (Nn; f =Ne)= log (Nref =Ne)

(2:3:9)

The power law accumulation theories using the three different methods

are compared with the experimental data by Manson et al. (1967). The high-

to-low (H-L) step-stress series was applied to smooth components made of

SAE 4130 steel with a soft heat treatment. The two stress levels are 881 and

594 MPa, which correspond to fatigue lives of 1700 and 81,250 cycles,

respectively. A fatigue limit of 469 MPa was also determined at 800,000

cycles. By applying Equations 2.3.7–2.3.9, the three power law exponent

values are obtained (i.e., 0.213 on Manson and Halford, 0.303 on Subraman-

yan, and 0.372 on Hashin). Figure 2.5 compares the predicted fatigue behav-

ior of the three power law damage rules with experimental data for SAE

4130. The curve derived from the Mason rule is close to the experimental data

and the Subramanyan and the Hashin curves are slightly nonconservative.

Example 2.1. An unnotched component is subjected to a four-level step-

stress fatigue test, which starts with the highest load level, �800 MPa, to

the lowest level, �200 MPa. At each load level, a cycle fraction of 0.01 is

added before proceeding to the next level. The sequence 1, 2, 3, 4 is repeated

until failure occurs when D ¼ 1:0. The specific four-level step stresses (Si), the

applied cycles (ni), and the associated fatigue lives (Ni, f ) are listed in Table

2.1. Estimate the fatigue life of the specimen based on the damage curve

approach by Manson and Halford.
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Solution. Choose Nref ¼ 103 cycles for the reference life because it has the

shortest life of the four life levels and so the linear damage rule applies for this

life level. For the first block of loading, proceed along the straight line curve

until D1 ¼ 10=103 ¼ 0:01. Then stop and traverse horizontally until on the

damage curve for N2, f ¼ 104 cycles at D1 ¼ 0:01. The equivalent damage

cycles for N2, f ¼ 104 cycles are n2, eq ¼ N2, f � [D1]
(Nref =N2, f )

0:4

¼ 104�
(0:01)(103=104)0:4 ¼ 1599 cycles.

With the additional n2 ¼ 102 cycles applied in the second block of loading,

the accumulated damage value becomes

D1þ2 ¼
n2, eq þ n2

N2, f

� � N2; f =Nref½ �0:4
¼ 1599þ 100

104

� � 104=103½ �0:4
¼ 0:01165

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

n1/N1,f

n
2,

f /
 N

2,
f

Subramanyan

Hashin

Manson

experiment

figure 2.5 Comparison of predicted fatigue behavior with experimental data for SAE

4130 steel for two-step loading.

table 2.1 Four-Level Step-Stress Fatigue Test Data

Four-Level Step-Stress Si (Mpa) ni (cycles) Ni; f (cycles)

�800 10 1000

�600 100 10,000

�400 1000 100,000

�200 10,000 1,000,000
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Proceed horizontally to the next damage curve for N3, f ¼ 105 cycles at

D1þ2 ¼ 0:01165. The corresponding number of cycles are

n3, eq ¼ N3, f � D1þ2½ �(Nref =N3, f )
0:4

¼ 105 � (0:01165)(103=105)0:4 ¼ 49378 cycles

By adding n3 ¼ 103 cycles in the third block of loading, the damage

accumulation so far is

D1þ2þ3 ¼
n3, eq þ n3

N3, f

� � N3, f =Nref½ �0:4
¼ 49378þ 1000

105

� � 105=103½ �0:4
¼ 0:01322

Finally, move horizontally to the last damage curve for N4, f ¼ 106 cycles

at D1þ2þ3 ¼ 0:01322. The equivalent damage cycles are

n4, eq ¼ N4, f � D1þ2þ3½ �(Nref =N4, f )
0:4

¼ 106 � (0:01322)(103=106)0:4 ¼ 761,128

The accumulated damage for additional n4 ¼ 104 cycles is calculated:

D1þ2þ3þ4 ¼
n4, eq þ n4

N4, f

� � N4, f =Nref½ �0:4
¼ 761128þ 10000

106

� � 106=103½ �0:4
¼ 0:01626

This completes the calculation of the total damage accumulation for the

four-level step loading. Then traverse horizontally back to the first curve

where you move up along the linear line from the damage value of 0.01626 to

0.02626 before going back horizontally to the second curve, etc. Advance

alternately up these curves until a total damage value of D ¼ 1 is eventually

reached. The complete list of iterations is illustrated in Figure 2.6 and Table

2.2. In this example, it takes 11 blocks to reach the failure point.

n/Nf , Cycle Fraction

N1,f =1,000 (Ref)

N2,f =10,000

N3,f =100,000

N4,f =1,000,000

n1/N1,f

n2/N2,f

n4/N4,f

n3/N3,f

1.0

1.0

0.0

D
, D

am
ag

e

figure 2.6 An example of DCA for four-step loading.
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2.4 linear damage models

If the damage curves in the cycle Ni, f coordinate are linearized, the linear

damage rule is developed by reducing the damage curves to a single line in the

cycle ratio ni=Ni, f domain, as shown in Figure 2.7. In this case, the fatigue

damage has a unique, linear relation with the cycle ratio regardless of the

stress levels. Hence, at a given level of damage, the cycle ratio for two

different damage curves will be the same. This is illustrated by Figure 2.7,

in which two linear damage curves plotted on a graph of damage versus

cycles to failure are equal to each other when plotted on a graph of damage

versus cycle ratio. Failure will occur when the sum of the ratios at each stress

table 2.2 Procedures for Fatigue Life Estimations Based on the Manson and Halford

Damage Curve Approach

No. of

Blocks neq þ n1 D1 neq þ n2 D1þ2 neq þ n3 D1þ2þ3 neq þ n4 D1þ2þ3þ4

1 10 0.01000 1699 0.01165 50378 0.01322 771128 0.01625

2 26 0.02625 2448 0.02915 58105 0.03253 815621 0.03955

3 50 0.04955 3123 0.05377 63923 0.05940 846818 0.07170

4 82 0.08170 3789 0.08738 68956 0.09582 872450 0.11503

5 125 0.12503 4470 0.13234 73577 0.14427 895010 0.17239

6 182 0.18239 5179 0.19155 77957 0.20780 915622 0.24731

7 257 0.25731 5925 0.26855 82191 0.29012 934891 0.34403

8 354 0.35403 6714 0.36763 86334 0.39567 953177 0.46765

9 478 0.47765 7552 0.49392 90423 0.52982 970713 0.62432

10 634 0.63432 8443 0.65354 94482 0.69898 987656 0.82131

11 831 0.83131 9391 0.85397 98529 0.91074 1004118 1.06730

N2,fN1,f n2n1
0

1.0

A A�

B�B

Nf, Cycles

A, A�

B, B�

0

1.0

1.0n1/N1,f  =  n2/N2,f

n/Nf, Cycle Fraction

D
, D

am
ag

e

D
, D
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ag

e

n2,f

figure 2.7 Linear damage accumulation.
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level reaches a value of 1.0. In terms of mathematics, the linear damage rule

can be expressed as follows:

Di ¼
ni

Ni, f

(2:4:1)

Failure is predicted when

SDi ¼
X ni

Ni, f

$1:0 (2:4:2)

The universally used linear damage assessment model was first proposed

by Palmgren (1924) for application to the Swedish ball bearing industry.

Langer (1937), working for Westinghouse in the electric power generation

area, independently proposed a similar linear rule for pressure vessel and

piping components made of steel. Miner (1945) of Douglas Aircraft built on

Langer’s work and applied the linear damage rule to tension–tension axial

fatigue data for aircraft skin material (aluminum alloy 24S-T ALCLAD).

Miner demonstrated excellent agreement between the predictions from the

linear damage rule and his experimental results. This success led to the strong

association between Miner and the linear damage rule, and the linear damage

rule is commonly referred to as Miner’s linear damage rule.

Since Miner’s work was conducted, the linear damage rule has been

demonstrated to be unreliable. Studies by Wirshing et al. (1995) and Lee et

al. (1999) are listed in Table 2.3 and show that the median damage values to

test specimens under certain loading conditions range from 0.15 to 1.06. This

is attributable to the fact that the relationship between physical damage (i.e.,

crack size or crack density) and cycle ratio is not unique and varies from one

stress level to another.

table 2.3 Statistics on Damage Values

Median

Coefficient

of Variation

Statistical

Distribution

Miner: Original work 0.95 0.26 Lognormal

Schutz: Crack initiation

29 Random sequence test series 1.05 0.55 Lognormal

Test with large mean load change 0.60 0.60 Lognormal

Significant notch plastic strain 0.37 0.78 Lognormal

Automotive axle spindle 0.15 0.60 Lognormal

Shin and Lukens: Extensive random test data 0.90 0.67 Lognormal

Gurney: Test data on welded joints 0.85 0.28 Lognormal

Lee: Mean stress effect—SAE cumulative

fatigue test data

1.06 0.47 Normal
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Example 2.2. Repeat Example 2.1 to determine the damage value for the

four-level step loading, using the linear damage rule.

Solution. The damage value due to the four-level step stresses is

X
Di ¼

n1

N1, f

þ n2

N2, f

þ n3

N3, f

þ n4

N4, f

¼ 10

103
þ 102

104
þ 103

105
þ 104

106
¼ 0:04

The total number of repetitions required for the four-step loading to reach

the fatigue failure point can be determined as follows:

Repetitions ¼ 1:0P
Di

¼ 1:0

0:04
¼ 25

The estimated 25 repetitions based on the linear damage rule are noncon-

servative compared with the estimated 11 repetitions from the nonlinear

damage theory.

2.5 double linear damage rule by manson

and halford

The tedious iteration process using the nonlinear damage theory and the

deficiency in damage assessment using the simple linear damage rule have

motivated researchers to look for a better way to overcome the disadvantages

of each method. Based on the observation that fatigue is at least a two-phase

process—crack initiation and crack propagation—the models for the damage

curves can be assumed to be bilinear.

Examples of such curves are shown in Figure 2.8. The bilinear model

represents an equivalent damage model to the damage curve accumulation

rule.

Manson and Halford (1981) derived the required criteria to determine the

coordinates of the knee point, i.e., the intersection between the two straight

lines of the bilinear curves. It is suggested that the straight line connecting

(0, 0) and (1, 1) be the reference damage line for the lowest life level. Because

of the nonlinear nature of damage and the accumulation of damage being

modeled as a bilinear process, the two regions of damage are identified. The

region of damage from the origin to the level of AA0 is designated as Phase

I (DI ), and the region of damage from AA0 to BB0 is defined as Phase II (DII ).

Using an approach similar to the method presented to normalize the cycle

ratio for linear damage accumulation, the cycle ratios for Phase I and Phase

II damage accumulations are constructed in a linear fashion, as shown in

Figure 2.9.

Figure 2.9 illustrates that the total damage can be decomposed into Phase

I damage (DI ) and Phase II damage (DII ). The Phase I linear damage
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accumulation rule states that prior to reaching the damage DI , the cycle

ratios can be summed linearly and are independent of the loading sequence

(i.e., from OA to OA0 or from OA0 to OA). When the sum of the cycle ratios

reaches unity, Phase I damage is completed. After the total damage beyond

DI , the Phase II linear damage accumulation rule applies. Regardless of the

loading sequence, the damage accumulation depends only on the total sum of

cycle fractions at each level. Based on the considerable amount of test data

developed for two-step loading on many materials, Manson and Halford

discovered that the knee point between Phase I and Phase II damage depends

on the ratio of N1, f =N2, f instead of the physical significance of crack initi-

ation and crack propagation. Figure 2.10 shows the linear damage rule for

the H-L step stress loading with the initial applied cycle fraction n1=N1, f and

B, B�

N2,fN1,f n2n1
0

1.0

A A�

B’B

Nf, Cycles

0

1.0

n/Nf, Cycle Fraction
D

, D
am

ag
e

D
, D

am
ag

e

1.0n1/N1,f n2/N2,f

A A’

Phase I

DI

Phase II

DII

Nref

figure 2.8 Double linear damage accumulation.
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figure 2.9 Phase I and Phase II linear damage rules.

LEE: FATIGUE TESTING AND ANALYSIS Final Proof 22.6.2004 4:07pm page 69

Double Linear Damage Rule by Manson and Halford 69



the remaining cycle fraction n2, f =N2, f . Figure 2.10 illustrates the double

linear damage rule and damage curve accumulations for the two-step loading

and the relationship between n1=N1, f and n2, f =N2, f . Equation 2.3.4 is the

mathematical model for the description of the relationship between n1=N1, f

and n2, f =N2, f . To meet the condition that the bilinear model is equivalent to

the damage curve accumulation rule, the knee point coordinates were derived

and are found to depend on the ratio of N1, f =N2, f . Figure 2.11 shows that

the test data on the knee point coordinates correlates well with N1, f =N2, f .

The coordinates of the knee point are empirically determined as follows:

n1

N1, f

� �
knee

¼ 0:35� N1, f

N2, f

� �0:25

(2:5:1)

1.0

1.0
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figure 2.10 Double linear damage and damage curve accumulations for two-step

loading.
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figure 2.11 The knee point coordinates for the double linear damage rule.
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n2, f

N2, f

� �
knee

¼ 0:65� N1, f

N2, f

� �0:25

(2:5:2)

It is important to note that the knee coordinates are independent of the

specific material. Hence, the knee points would be the same for all materials.

Their location is dependent only on maximum and minimum lives.

Example 2.3. Block loads are successively applied to a component until

failure occurs. Each block has a two-step loading in which 10 cycles of the

first loading are applied and followed by 103 cycles of the second loading. The

first and second loading alone will fail the component to 103 cycles and 105

cycles, respectively. Determine how many blocks the component can sustain.

Solution. The first step is to construct the double linear damage rule. As

shown in the double linear damage accumulation plot (Figure 2.12), a

straight line connecting (0,0) with (1,1) is chosen as the reference damage

curve for the lower life level (N1, f ¼ 103 cycles). Along this line, the damage

and the coordinate at the breakpoint are defined by Equation 2.5.1, i.e.,

Dknee ¼
n1

N1, f

� �
knee

¼ 0:35� N1, f

N2, f

� �0:25

¼ 0:35� 103

105

� �0:25

¼ 0:111

Therefore, the number of cycles to Phase I damage for the 103-cycle-life

loading is 111 cycles (i.e., NI1, f ¼ 0:111� 103), and the number of cycles to

Phase II damage is 889 cycles (i.e., NII1, f ¼ 1000 --- 111). The remaining cycle
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ag
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figure 2.12 Double linear damage rule for two-step load levels.
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fraction of the break point at the equivalent damage of 0.111 for 103-cycle-

life loading can be defined by Equation 2.5.2:

n2, f

N2, f

� �
knee

¼ 0:65� N1, f

N2, f

� �0:25

¼ 0:65� 103

105

� �0:25

¼ 0:206

The number of cycles to Phase II damage for the 105-cycle-life loading is

20,600 cycles (i.e., NII2, f ¼ 0:206� 105), and the number of cycles to Phase I

damage is 79,400 cycles (i.e., NI2, f ¼ 100,000 --- 20,600).

The next step is to track the damage accumulation as successive loading

blocks are applied. To reach Phase I damage the number of cycles for the 103-

cycle-life loading alone is 111 cycles and for the 105-cycle-life loading alone is

79,400 cycles. Therefore, the number of blocks (BI ) to complete Phase I

damage can be calculated as follows:

BI �
10

111
þ 1000

79400

� �
¼ 1:0; BI ¼ 9:7 blocks

In the similar fashion, the number of blocks (BII ) to complete Phase II

damage is estimated in the following:

BII �
10

899
þ 1000

20600

� �
¼ 1:0; BII ¼ 17:0 blocks

Thus, based on the double linear damage rule the total blocks to failure

(BI þ BII ) are 26.7 blocks (¼ 9:7þ 17:0). For reference purpose, the Miner

linear damage rule would have unconservatively predicted 50 blocks for this

sequence of loading.

For block loading involving more than two load levels, the following

procedures (Manson and Halford, 1981) for the double linear damage rule

were developed. It is conservative to assume that if the individual loading

within the block has lives from Nlow ¼ N1, f to Nhigh ¼ N2, f , the bilinear

damage curve for other loading can be interpolated from the double linear

damage rule established by Equations 2.5.1 and 2.5.2. It is stated that the

total fatigue life (Nf ) can be decomposed into Phase I fatigue life (NI ) and

Phase II fatigue life (NII ), i.e.,

Nf ¼ NI þNII (2:5:3)

One chooses the following form for the relationship between Phase I

fatigue life and the total fatigue life:

NI ¼ Nf exp (ZN
f
f ) (2:5:4)

where Z and f are constants. The two parameters can be determined from

the two knee points on the NI curve for the double linear damage rule.

Applying Equations 2.5.1 and 2.5.2 for the knee points leads to the following
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equations for the number of cycles to Phase I damage for the two loads with

the N1f and N2f life levels:

NI,N1, f
¼ N1, f

n1

N1, f

� �
knee

¼ 0:35N1, f

N1, f

N2, f

� �0:25

(2:5:5)

NI,N2, f
¼ N2, f 1� n2, f

N2, f

� �
knee

� �
¼ N2, f 1� 0:65

N1, f

N2, f

� �0:25
 !

(2:5:6)

Substituting into Equation 2.5.4 allows the solution for Z and f as

follows:

f ¼ 1

Ln N1, f =N2, f

� �Ln
Ln(0:35(N1, f =N2, f )

0:25)

Ln(1� 0:65(N1, f =N2, f )
0:25)

" #
(2:5:7)

Z ¼ Ln(0:35(N1, f =N2, f )
0:25)

N
f
1, f

(2:5:8)

The equation for NII becomes

NII ¼ Nf �NI ¼ Nf (1� exp (ZN
f
f ) ) (2:5:9)

Example 2.4. An additional loading with 100 cycles is inserted into the

previous two-step loading in Example 2.3. This loading will produce

the intermediate fatigue life of 104 cycles. Determine how many blocks the

component can sustain.

Solution. Because the double linear damage rule based on Nlow ¼ N1, f ¼ 103

cycles and Nhigh ¼ N2, f ¼ 105 cycles was constructed in Example 2.3, the

interpolation formulas will be used to generate the bilinear damage model for

the 104-cycle-life loading (as shown in Figure 2.13). From Equations 2.5.7

and 2.5.8, the two parameters Z and f are determined as follows:

f ¼ 1

Ln 103=105ð ÞLn
Ln 0:35 103=105

� �0:25
� �

Ln 1� 0:65 103=105ð Þ0:25
� �

2
4

3
5 ¼ �0:4909

Z ¼
Ln 0:35 103=105

� �0:25
� �

(103)�2:077
¼ �65:1214

Based on Equation 2.5.4, the number of cycles to Phase I damage for the

104-cycle-life loading is
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NI,3, f ¼ Nf exp (ZN
f
f ) ¼ 104 exp (� 65:1214� (10000)�0:4904) ¼ 4910 cycles

The number of cycles to Phase II damage is then calculated:

NII,3, f ¼ Nf �NI ¼ 10,000� 4909 ¼ 5090 cycles

Therefore, the number of blocks (BI ) to complete Phase I damage can be

calculated as follows:

BI �
10

111
þ 100

4910
þ 1000

79400

� �
¼ 1:0; BI ¼ 8:1 blocks

The number of blocks (BII ) to complete Phase II damage is estimated in

the following:

BII �
10

899
þ 100

5910
þ 1000

20600

� �
¼ 1:0; BII ¼ 13:1 blocks

The total number of blocks to failure is estimated to be 21.2 blocks

(¼ 8:1þ 13:1). The Miner linear damage rule would have unconservatively

predicted 33 blocks.

Example 2.5. Repeat Example 2.1 by using the double linear damage rule for

fatigue life estimation.

Solution. To construct the double linear damage rule, Nlow ¼ N1, f ¼ 103

cycles and Nhigh ¼ N2, f ¼ 106 cycles were chosen. The bilinear damage

models for the 104-cycle-life and the 105-cycle-life loads are interpolated
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figure 2.13 Double linear damage rule for three-step load levels.
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later with the two calculated parameters (f ¼ �0:4514 and Z ¼ �62:7717).

The coordinates of the knee points and the corresponding Phase I and Phase

II damage values for four-step step-stress loads are presented in Table 2.4.

The blocks required to complete Phase I and Phase II are calculated as 4.7

blocks and 6.8 blocks, respectively, leading to a total of 11.5 blocks to

produce failure. When compared with the estimated 11 blocks to failure

using the damage curve approach as illustrated in Example 1.1, this shows

a very good correlation. The predicted 11.5 blocks to failure by using the

double linear damage rule is very close to the prediction (11 blocks) by the

damage curve accumulation rule.

2.6 conclusions

The double linear damage rule by Manson and Halford is recommended

for use in engineering design for durability because of the tedious iteration

process by the nonlinear damage theory and the deficiency in linear damage

assessment. Note that the knee coordinates in the double linear damage rule

are independent of the specific material. Hence, the knee points would be the

same for all materials. Their location depends only on the maximum and

minimum lives.
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